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Abstract 

The theory for electron channelling patterns has been 
investigated. Calculations based on existing intensity 
expressions have been found inadequate for explain- 
ing recently observed deviations from Friedel's law. 
This is found to be the case even if the calculations 
are based on the full non-Hermitian eigenvalue 
matrix. The theory has hence been reinvestigated and 
a new intensity expression has been derived which 
includes the inter Bloch-wave coupling terms and is 
valid for non-centrosymmetric polyatomic crystals. 
The expression explains the observed asymmetries 
for GaSb which make it possible to determine unam- 
biguously the correct non-centrosymmetric point 
group for this crystal. It is further found that the same 
effects in GaAs should be very weak in accordance 
with the non-observed deviation from Friedel's law 
in this case. 

Introduction 

Violation of Friedel's law in electron diffraction 
experiments is due to dynamical interactions between 
simultaneously excited Bragg beams (e.g. Kohra, 
1954; Miyake & Uyeda, 1955; Fujimoto, 1959). Asym- 
metries which could be ascribed to this effect were 
reported for the non-centrosymmetric structure of 
ZnS by Thiessen & Moli~re (1939) and also by Miyake 
& Uyeda (1950). More recently, convergent-beam 
electron diffraction (CBED) and the bend extinction 
contour technique have proved to be well suited to 
reveal deviations from Friedel's law and consequently 
the absence of a centre of symmetry in a 
non-centrosymmetric structure (e.g. Goodman & 
Lehmpfuhl, 1968; Steeds, Tatlock & Hampson, 1973; 
Goodman, 1975; Steeds & Vincent, 1983). 

*Present address: SI NTEF, Division of Applied Physics, N-7034 
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In selected area channelling patterns (SACP), 
however, deviations from centrosymmetry have not 
been observed until recently. In a general investiga- 
tion of the possible use of the SACP technique in 
structure studies (H0ier & Marthinsen, 1986; 
Marthinsen, 1986; Marthinsen & H0ier, 1988), effects 
have been observed for gallium antimonide which 
make it possible to determine the correct non- 
centrosymmetric point group in this case. Such effects, 
which may be ascribed to the failure of Friedel's law 
in electron channelling patterns, cannot be explained 
by any of the existing theoretical expressions as given, 
for example, by Reimer, Badde, Seidel & Bfihring 
(1971), Spencer, Humphreys & Hirsch (1972), 
Yamamoto, Mori & Ishida (1978) or Spencer & 
Humphreys (1980). 

The aim of the present work has been to investigate 
these observed effects more thoroughly. The theory 
is hence reinvestigated in order to obtain an 
expression which is able to account for the observa- 
tions from gallium antimonide. As is well known from 
CBED, for example, the possible identification of a 
non-centrosymmetric structure is coupled to the inter- 
action terms between the different Bloch waves. On 
this basis it may therefore be assumed that a many- 
beam intensity expression for channelling patterns 
has also to include these coupling terms. Their contri- 
bution to the channelling contrast from GaSb and 
GaAs is investigated in particular both theoretically 
and experimentally. Some preliminary results have 
been given previously (Marthinsen & H0ier 1986a; 
Marthinsen, Anisdahl & H0ier, 1987). 

Experimental 

The experiments were carried out in a JSM-840 scan- 
ning electron microscope. All the patterns reproduced 
below were obtained near a (001) zone. 
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A reproduction of a [001] zone-axis pattern from 
GaSb is shown in Fig. l (a ) .  The interesting asym- 
metry is most clearly seen in the (105) zones. Lines 
to be compared are indicated by arrows. It is seen 
that mirror symmetry is violated across the 200 bands 
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but retained across the 220 bands. For the (001) full 
pattern symmetry 2ram results, and this is in accord- 
ance with the point group of GaSb (~,3m). Details 
from the [105] zone are shown in Fig. l (b) .  The most 
important lines involved in the asymmetry are given 
schematically in Fig. 3. The most prominent features 
are shown by heavy lines. In the upper part the 537 
line contrast is seen to dominate between the 040 and 

m _  

020 lines while the 511 line contrast seems to dominate 
the whole length between the 020 and 040 lines. 
Between the 020 and the 0~,0 line the 531 line is also 
observed, but less marked than the 531 line in the 
symmetrical position. In the lower part the 331 line 
has a stron_g_segment between the 020 and the 040 
line while 511 dominates between the 020 and 040 
lines. The difference in contrast between the 511 and 
511 lines at symmetrical positions about the band 
center may be considered as a violation of Friedel's 
law in a broad sense since the 511 reflection is 
eauivalent to the 511 reflection in GaSb, and because 
this effect makes it possible to determine the correct 
non-centrosymmetric point group in this case. 

A similar asymmetry to the one discussed above is 
also observed in the 711 and 711 lines belonging to 
the [107] zone in Fig. l (b) .  

We have also looked for similar effects in GaAs 
which has the same_point group and space group as 
GaSb (point group 43m; space group F43m). There 
is, however, a very important distinction between the 
two crystals. Owing to the large difference in atomic 
number between Ga and Sb, GaSb deviates strongly 
from centrosymmetry. GaAs, on the other hand, devi- 
ates very little from centrosymmetry. A close-up view 
of the [105] zone-axis pattern from GaAs is shown 
in Fig. 2. No asymmetry like the one observed for 
GaSb is observed in the prominent lines. As explained 
by Marthinsen & H~ier (1988) one may for this reason 
erroneously be led to the conclusion that the [001] 
zone-axis pattern of GaAs has 4mm symmetry. 
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(b) 
Fig. 1. (a) SACP near the [001] zone in GaSb. Arrows show lines 

with asymmetric contrast in the (105) zones. (b) Details from 
the [105] zone. The sections A and B indicate the positions of  
the contrast profiles given in Fig. 6. 

Theory 
As with several previous theories for electron chan- 
nelling contrast, we shall consider the incident elec- 
trons in the crystal as a superposition of Bloch waves 
(e.g. Reimer, Badde, Seidel & BiJhring, 1971; Spencer, 
Humphreys & Hirsch, 1972). It is further assumed 
that the main mechanism responsible for backscatter- 
ing is phonon scattering. One of the present authors 
has recently performed a generalization of the 
expressions of Spencer et al. (1972) to include poly- 
atomic crystals (Marthinsen, 1986). We shall follow 
the same procedure as outlined in that work to obtain 
an analytical expression for the thermal diffuse scat- 
tering. In the present derivation, however, the coup- 
ling terms between the different Bloch waves are also 
included, i.e. the Bloch waves are no longer assumed 
to backscatter independently. 
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Consider a crystal of thickness t with a slice of 
thickness dz at depth z with dz/V~ unit cells per unit 
area ( V~ = the unit-cell volume). In the upper part of 
the crystal (above dz) the incident beam, ko, is Bragg 
scattered into discrete beams g with a strength given 
by the scattering-matrix elements 

S~o(ko, z) =~. C~*Cg e i~''z (1) 
i 

where C~ is a component of the ith Bloch-wave 
eigenvector I Ci) corresponding to the eigenvalue yi. 
C~* is the excitation coefficient of the ith Bloch wave 
and follows from the boundary condition of con- 
tinuity of the electron wave function at the top crystal 
surface (e.g. Humphreys, 1979). 

In the slice dz kinematical thermal diffuse scatter- 
ing takes place from all the Bragg beams into the 
direction s. Following the procedure of Marthinsen 
(1986), which is a generalization of the two-beam 
theory of Hall & Hirsch (1965), and in addition 
including the coupling terms between the different 
Bloch waves, one obtains for the thermal diffuse 
scattering in dz 

dlD(s, z )=(dz /  Vc) ~. ~ C~*CJoexp[i(yi-yJ)z] 
i j 

× exp[-(~, '  + ~,J)z] Y~ 2 c~c~* 
g h 

5,3i 531" 

5~'T 
51 T ~ ' ' ' ~  

,~11 

1 T 
o4o 040 

Fig. 2. SACP near  the [105] zone  in GaAs.  Apparen t ly  mir ror  
symmetry  in the 020 band.  The  sections A and B indicate  the 
posit ions o f  the contrast  profiles given in Fig. 8. 

~-" r J  4 - J ,  
X ~ J s - g J s - h  

J 

x [ e x p ( - M ~ _ s ) -  e x p ( - M { _ g -  M{-h)] 

X e x p [ / ( h - g ) .  U]. (2) 

Here /z i is the Bloch-wave amplitude absorption 
coefficient, f{_~ is an atomic scattering amplitude for 
atom J, and exp ( -M~_g)  is the Debye-Waller factor 
associated with atom J for the reflection ( h - g ) .  The 
summation over J is taken over the atoms at positions 
r~ in the unit cell. 

For large values of s corresponding to backscatter- 
ing we can make the following simplification in (2) 
(cf Spencer et al., 1972). Since Isl~'lgl and Ihl, 

exp (-M{_g)"-- exp (--M{_h)'O. 

Moreover, f~_n=f~_g~-f~, and f~ is to a good 
approximation given by the Rutherford part of the 
scattering factor, i.e. 

If~12=(e2mZj/4~eoh2)2(47r)4/4s "*. (3) 

Here Zj is the atomic number, and e and m are the 
charge and mass of the electron, respectively, s = 
4or(sin 0)/A where A is the wavelength of the electron. 
h is Planck's constant and eo is the permittivity of 
free space. To obtain the backscattered intensity dis  
from dz, we need to find the fraction of electrons 
which is scattered into directions towards the surface 
of the crystal. This implies that d/Dis, z) must be 
integrated over all values of s corresponding to back- 
scattering. Assuming normal incidence and employ- 
ing the simplifications made above, one gets after 
integration 

dz / e2mA2k2 i ,  j 

v~ \~1r~on / i j 

x exp [ i (3 / ' -  yJ)z] 

x exp [ - ( ~ ' +  ~J)z] Y. Y~ C;C~*y, Z~ 
g h J 

x exp(-MJh_g) exp [ i (h-g)  . u ]. (4) 

To get the total intensity backscattered from the 
crystal, (4) must be integrated over all thicknesses t. 
Redistribution of the electrons on their way out of 
the crystal is ignored as the dominating amount will 
still be in the backscattering hemisphere and hence 
will reach the detector. 

We have to evaluate the integral 

l = i e x  p [ i ( v i - yJ ) z ]  exp [ - ( / z i + ~ J ) z ]  dz. (5) 
o 

For bulk crystals we may safely take the upper integra- 
tion limit to be t = oo. Then the integral may be 
evaluated to give (Gradshteyn & Ryzhik, 1980) 

I = [ (~ '  + iz j) + i ( y i -  yj ) ] /[  ( T i__ T j)2 ..~ (~.Li _~_ ~.~j)2]. 

(6) 



KNUT MARTHINSEN AND RAGNVALD HOIER 703 

Using (6) we may finally obtain for the total 
backscattered intensity IB the expression 

77" f e2mA2~ 2 
In =-~ \4rreoh2] ~i ~'i IA OI 

x (/*i +/z j) cos 4)0-  (y~-  y s) sin 4)o (7) 
( r ' -  rJ)  2 + (~*' + t,s) 2 

where 

A° = C~*CSo E E "-. g'-'hri c,S* 
g h 

×Y~ Z~exp ( -MS_~)exp[ i (h -g ) . r s ]  (8) 
s 

and ~b 0 is the phase of A °. The Bloch-wave eigenvec- 
tor components, C~, and the eigenvalues y~ defining 
the dispersion surface may be found from the eigen- 
value equation of standard many-beam electron 
diffraction theory (e.g. Humphreys, 1979), 

MIC~) = 2ky'l C ~) (9) 

where Moo = 0, Mgg = 2ksg, Mhg = Uh-g. 
Here sg is the excitation error for the diffracted 

beam g, and Uh-g is a Fourier coefficient of the real 
part of the potential U(r). When U(r) is real, Ug = 
U*_g and the matrix M is Hermitian. Hence the eigen- 
values yi are real although the eigenvectors Cg are, 
in general, complex. The eigenvectors, however, will 
form a complete orthonormal set. Absorption is for- 
mally introduced by the addition of an imaginary part 
iU'(r) to the potential. This part is normally treated 
as a small perturbation and the Bloch-wave amplitude 
absorption coefficients are calculated from the per- 
turbation expression 

2k/x' = U~)+ EE t " J h - g ~ ' h  ~"g, (10) 
h~g 

where k is the wave vector and U~_g is a Fourier 
coefficient of the imaginary part of the crystal poten- 
tial. To estimate these Fourier coefficients it is 
assumed that the non-Hermitian part of the potential 
has the same dependence on position as the real part, 
and we have used the approximation 

(Re U~,)/(Re U n ) = ( I m  U~,)/(IE Uh)=0.1.  (11) 

Although it may be quantitatively inaccurate, we still 
believe that such an approximation takes care of the 
typical variations in /z ~ [(10)] with the diffraction 
condition. The Fourier coefficients of the Hermitian 
part of the potential are all calculated from Doyle & 
Turner (1968). 

In (8) a Debye-Waller factor for each atomic type 
is included. However, in the calculations we have for 
simplicity assumed a common Debye-Waller factor, 
and the Debye-Waller factors for the compounds in 
question are used. The temperature factors B for 

GaSb and GaAs are taken from International Tables 
for X-ray Crystallography (1962). 

The many-beam intensity expression in (7) is gen- 
erally valid for polyatomic and non-centrosymmetric 
crystals. The theory of Reimer et al. (1971) did also 
include the coupling terms, ij, between the different 
Bloch waves, but their formulation is not valid for 
general non-centrosymmetric and polyatomic crys- 
tals. It should be noted that in the derivation of (7) 
we have not taken into account effects of multiple 
inelastic scattering. The background contrast level is 
therefore not correct. However, the intensity 
expression (7) includes all the essential Bragg scatter- 
ing effects and is thus expected to be well suited for 
qualitative comparisons between calculated diffrac- 
tion effects and experiments. 

Calculations and discussions 

All the calculations presented below refer to the line 
pattern shown schematically in Fig. 3. To solve the 
dynamical eigenvalue equation [(9)] for the diffrac- 
tion conditions in question, i.e. to determine the 
Bloch-wave amplitudes Cg and the corresponding 
Anpassungen yi, we have utilized a software routine 
which is based on a diagonalization algorithm 
described by Peters & Wilkinson (1970) (see also 
Wilkinson & Reinsch, 1971). This routine is able to 
handle Hermitian as well as non-Hermitian matrices. 

From standard SACP theory the contrast profiles 
along the symmetrical sections A and B in Fig. 3 

020 020 

__ / 
531t.,f 

Fig. 3. A schematic drawing of the intensity anomalies in Fig. 1, 
[105] zone. The sections A, A', B and B' indicate the positions 
of the contrast profiles given in Fig. 6. 
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should be identical. In Fig. 4(a) a cut through the 
dispersion surface for section A in GaSb is shown. 
Five beams (viz  000, 020, 5T1, 515 and 535) are taken 
into account in these calculations. The same disper- 
sion surface is valid for section B if the five corre- 
sponding beams are taken into account. This follows 
from the fact that the eigenvalue matrices M for the 
sections A and B are then related by MA = M B r ---- M* 
(the second equality follows from the Hermitian 
property of M when absorption is excluded). If the 
contrast profiles along the sections A and B are 
calculated from (7), without the coupling terms, /j, 
between the different Bloch waves, the same profiles 
result (Fig. 4b), giving a mirror plane in the middle 
of the 020 band. It should be noted that (7) without 
the coupling terms, ij, is (apart from a background 
term) almost equivalent to the intensity expression 
of Spencer et al. (1972). This expression therefore 
leads to the same conclusions as above. However, as 
pointed out previously, the mirror plane in the middle 
of the 020 band is neither observed nor in accordance 
with the structure. 

In a first attempt to explain the observed effects 
from GaSh, the coupling terms between the different 
Bloch waves were still ignored. But instead of taking 

2ky 
(A -2 

-2 

51T 5T1 53i 
(5Ti) (51T) (5~i) 

IBXI03 

(a) 

A and B 

2. 

~ f  

51T ST~ 53i 
(5TT) (51T) (5~T) 

(b) 
Fig. 4. (a) Calculated dispersion surface corresponding to sections 

A and B in Fig. 3 for GaSb. The indices in parentheses refer to 
section B. (b) Contrast profile for the sections A and B without 
/j coupling terms. 

into account absorption by perturbation theory, the 
imaginary part of the potential was introduced in the 
original dynamical equations, and the resulting non- 
Hermitian eigenvalue problem (9) was solved for the 
sections A and B. A slightly modified version of (7) 
without the coupling terms, ij, was used to calculate 
the contrast profiles. The modifications are discussed 
in the Appendix and the resulting calculations are 
shown in Fig. 5. We notice that there are only minor 
differences between the two profiles, and the asym- 
metry is far too small to account for the experimental 
observations of GaSb. 

The reason why there are differences at all is that 
the eigenvalue matrices for the two sections are 
different ( M  A = MBr# M*), giving slightly different 
eigenvector sets. Comparison with Fig. 4(b) shows 
further that the effect of diagonalizing the full com- 
plex eigenvalue matrix is small. It may be concluded 
from these results that including absorption through 
a non-Hermitian matrix is not sufficient to explain 
the asymmetry observed in the electron channelling 
patterns (Fig. 1) from GaSb. 

We therefore proceeded to the investigation of the 
influence of the coupling terms between the different 
Bloch waves. In all the subsequent calculations 
absorption is treated by perturbation theory. 
Calculations for GaSb, as given by (7) for the sections 
A and B in Fig. 3, are shown in Fig. 6(a). The solid 
line and the dotted line correspond to sections A and 
B, respectively. In both sections the dominant contrast 
variation is associated with the position of the 511 
line. This is in accordance with the general trend of 
the experimental observations (Fig. lb), shown 
schematically in Fig. 3. It should be added that the 
profiles in Fig. 6(a) neglecting lines belonging to 
other zones than the [105] zone, also apply for the 
sections C arid D, respectively. 

Calculations have also been performed for the sym- 
metrical sections A'  and B' outside the 020 band. 

IBXl 

1 I 1 

51"1 5"1i 53~ 
(5iT) (51i)(5~T) 

Fig. 5. Calculated contrast profiles corresponding to sections A 
and B in Fig. 3 for GaSb. Calculations without ij coupling terms, 
but using the eigenvectors obtained by solving the full non- 
Hermitian eigenvalue problem. Solid line, section A. Dotted 
line, section B. The indices in parentheses refer to section B. 
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These are six-beam calculations. The 040 and the 040 
beams are added in the calculations for the sections 
A' and B', respectively. Like the intensity variations 
along the sections A and B, the contrast profiles along 
A' and B' should be similar according to standard 
theory. This is indeed not in agreement with the 
experiments (Fig. 1). The contrast profiles obtained 
with the present theory are shown in Fig. 6(b). For 
section A' (solid line) the most marked contrast fall 
may be associated with the position of the 531 line. 
For section B' (dotted line) the contrast starts drop- 

r e _  

ping markedly at the 511 line position but does not 
reach a minimum until outside the 531 line position. 
These results agree satisfactorily with the obser- 
vations. Detailed features of the experimental 
observations which are inconsistent with these calcu- 
lations may be ascribed to the limited number of 
beams taken into account. The good correspondence 
between Fig. 6 and the observed effects demonstrates 
that such effects may only be accounted for provided 
the ij coupling terms between the Bloch waves are 
included. 

IBX103 

IBXI03 

I 
51]" 5TT 53]" 

(5~'1") (51T) (5"3T) 
(a) 

I I I 
51~ 53~ 5 ~  

(5TT)(5]T) (5~T) 
(b) 

Fig. 6. Calculated contrast profiles for the sections A, A', B and 
B' in Fig. 3 for GaSb, including/j  coupling terms. (a) Contrast 
profile, section A (solid line) and contrast profile, section B 
(dotted line). (b) Contrast profile, section A' (solid line) and 
contrast profile, section B' (dotted line). The indices in paren- 
theses refer to sections B and B', respectively. 

In the line pattern we have discussed for GaSb, 
the clue to the correct point-group determination is 
the absence of a mirror plane in the middle of the 
020 band. Provided that only the zero-order Laue 
zone (ZOLZ) lines are important, the departure from 
centrosymmetry (or equivalently failure of Friedel's 
law) can, in principle, be detected in less-symmetric 
line patterns than the one shown in Fig. 3. Consider 
the hypothetical line pattern shown in Fig. 7. If only 
the ZOLZ lines indicated are taken into account, the 
eigenvalue matrices M [(9)] for sections A and B are 
related by M A  = M T and the dispersion surfaces are 
thus identical. For a centrosymmetric crystal the con- 
trast profiles will hence be the same. However, 
differences such as the ones in ,Fig. 6 will be intro- 
duced for a non-centrosymmetric crystal. Absence of 
centrosymmetry can therefore, in principle, be deter- 
mined. The practical use of such a procedure, 
however, is expected to be complicated by the 
influence of lines belonging to other zones since sec- 
tions A and B, in general, will be affected differently. 
The possible observation of these kinds of effects 
depends on the many-beam interactions involved and 
to what extent the structure deviates from centrosym- 
metry. The latter point is exemplified in GaAs. 

If we refer to the line pattern in Fig. 2, for GaAs, 
there was no experimental evidence of effects similar 
to those observed for GaSb. To see how this fits in 
with the theory, we have calculated the contrast 
profiles for sections A and B (Fig. 3) with and without 
the coupling terms, ij, between the different Bloch 
waves, from (7). The results are shown in Fig. 8. Fig. 
8(a) refers to calculations without the coupling terms, 
ij, while the solid line and the dotted line in Fig. 8(b) 
correspond to sections A and B, respectively, includ- 
ing these coupling terms. 

g 

g-h 

h 

I 

h-g 

Fig. 7. A hypothetical line pattern showing sections A and B, 
having the same dispersion surface cut provided only lines 
belonging to the zero-order Laue zone are taken into account. 
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We notice first that, as for GaSb, the inclusion of 
the coupling terms between the different Bloch waves 
brings about corrections. The small fluctuations seen 
near both the intensity maximum and the intensity 
minimum in Fig. 8(a) are smoothed out in 8(b). 
However, when we compare the contrast profiles in 
(b), there are in this case, as opposed to the calcula- 
tions for GaSb, only small differences. The most 
pronounced contrast variations are associated with 
the 511 line in section A and the 511 line in section 
B, giving almost identical profiles. This means that 
the calculations agree well with the experimental 
observations. The distinctions recognized between the 
profiles in Fig. 8(b) are too small to be seen in our 
experiments, which explains the erroneous iden- 
tification of a mirror plane in the middle of the 020 
band. The present calculations for GaAs also support 
our previous conclusions (Marthinsen & H~ier, 1988) 
that the type of many-beam effects considered is 
rather insensitive to small deviations from centro- 
symmetry. 

An interesting aspect of the effects discussed, which 
should be mentioned, relates to the dispersion sur- 

face. In recent studies on many-beam diffraction 
effects in channelling patterns it was concluded that 
the contrast effects could be interpreted from the 
dispersion surface and the contrast in a line was in 
most cases determined by a particular dispersion sur- 
face gap width (Marthinsen & H0ier, 1986b; 
Marthinsen, 1986). The contrast effects investigated 
in this work, however, cannot be interpreted in this 
simple way. Firstly, the dispersion surfaces in ques- 
tion (e.g. Fig. 4a) are so complicated that the contrast 
in a particular line cannot be associated with a single 
gap at the dispersion surface. But the most important 
point is that the contrast effects we have discussed 
refer to differences along two sections with identical 
dispersion surfaces (for instance sections A and B in 
Fig. 3). These effects are thus of another kind than 
the non-systematic many-beam effects discussed pre- 
viously, and, as demonstrated in the present work, 
they are due to interactions between the different 
backscattered Bloch waves. Only when such terms 
are present and non-negligible may the correct non- 
centrosymmetric point group be determined experi- 
mentally (Marthinsen & H0ier, 1988). 

IBXI03 

1.5 

IBXI03 

A AND B 

I I I 

5~T 5TT 53T 
(5TT) (5~T) (55T) 

(a) 

1.5 

I I I 

51T 5~T 53T 
(5TT) (51T) (5IT) 

(b) 
Fig. 8. Calculated contrast profiles corresponding to sections A 

and B in Fig. 3 for GaAs. (a) Contrast profile without ij coupling 
terms. (b) Contrast profile, section A (solid line) and contrast 
profile, section B (dotted line). The indices in parentheses refer 
to section B. 

This work was supported in part by Norges Tek- 
niske HCgskoles Fond. The electron channelling pat- 
tern in Fig. 2 was kindly supplied by Dr B. T0tdal. 

APPENDIX 

The necessary modifications to the electron backscat- 
tering intensity expression upon the inclusion of 
absorption in the eigenvalue matrix [equation (9)] 
are discussed below. Numerical calculations are per- 
formed and compared for the sections A and B in 
GaSh (see Fig. 3). 

It follows from standard dynamical electron 
diffraction theory (e.g. Humphreys, 1979) that the 
excitation coefficients c i of the different Bloch waves 
in the crystal can be written c i=  C~* as assumed in 
the text [equation (1)]. However, when absorption is 
taken into account by adding a small imaginary term 
iU'(r),  the standard treatment no longer holds 
(David, Gevers & Stumpp, 1985). Since the non- 
Hermitian part of the potential is purely imaginary, 
we must have U~* = U'g and therefore for the com- 
plex potential 

(Ug+iU'g)~(U_g+iU'_g)*. (A1) 

It hence follows that the eigenvalue matrix M 
[equation (9)] becomes a complex general matrix, 
and the eigenvectors of such a matrix do not form 
an orthonormal set. However, a generalized orthonor- 
malization relation may be derived for this case. With 
some matrix algebra it is seen that 

C(2)[C(1)) (A2) 
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where the eigenvector I C~)) is a solution of the 
original eigenvalue equation [equation (9)], while 
I CI2)) is a solution of the equation 

M t [  i it i C(2)) = 2k3, l C(2)) (A3) 

or equivalently 

(CI2)IM = 2k7"*(C12)1 (A4) 

where M* denotes the adjoint matrix of M and 
,)/it* : ,)/i. 

Utilizing (A2), we obtain 

c '=  (C 12)1 o/(CI2)I CII )) (A5) 

where (C12)1o is the 0 component of the Bloch-wave 
eigenvector (C~]. 

By substituting such generalized excitation 
coefficients into the intensity expression [equation 
(7)] and neglecting the coupling terms, ij, the contrast 
profiles along sections A and B in Fig. 3 for GaSb 
have been calculated. The results are shown in Fig. 5. 
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Penrose Patterns and Related Structures. II. 
Decagonal Quasicrystals 
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Abstract 

Structural relations of the two decagonal phases in 
A1-Mn and A1-Fe alloys with the Penrose pattern are 
discussed based on structure-factor calculations and 
symmetry considerations. The electron diffraction 
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patterns are explained by models with layer structures 
which consist of the stacking of four kinds of layers 
constructing the Penrose pattern. A1-Mn has six 
layers within a period along the tenfold axis while 
AI-Fe includes eight. A projection along the axis 
shows the Penrose pattern in both models. The sym- 
metries of A1-Mn and A1-Fe are expressed by the 
five-dimensional superspace groups PlOs/mmc and 
PlOsmc. These give the observed systematic extinc- 
tion rules. In A1-Fe, an additional extinction rule due 
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